
I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 
Published Online October 2012 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijieeb.2012.05.07 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

Reduction of Power Consumption in  

FPGAs - An Overview 

 
Naresh Grover, Dr. M.K.Soni 

Faculty of Engineering and Technology, Manav Rachna International University, Faridabad, India  

grovernr@rediffmail.com, dr_mksoni@hotmail.com 
 

 

Abstract — Field Programmable Gate Arrays FPGAs are 

highly desirable for implementation of digital systems due 

to their flexibility, programmability and low end product 

life cycle. In more than 20 years since the introduction of 

FPGA, research and development has produced dramatic 

improvements in FPGA speed and area efficiency, 

narrowing the gap between FPGAs and ASICs and 

making FPGAs the platform of choice for implementing 

digital circuits. FPGAs hold significant promise as a fast 

to market replacement. Unfortunately, the advantages of 

FPGAs are offset in many cases by their high power 

consumption and area. The goal is to reduce the power 

consumption without sacrificing much performance or 
incurring a large chip area so that the territories of FPGAs 

applications can expand more effectively. Reducing the 

power of FPGAs is the key to lowering packaging and 

cooling costs, improving device reliability, and opening 

the door to new markets such as mobile electronics. This 

paper presents the tips to lower down the static and 

dynamic power dissipation in FPGAs. It gives an 

overview of various techniques at system, device, and 

circuit and architecture level used for reduction of power 

consumption of FPGAs and their outcomes. 

 
Index Terms — Static and dynamic power, embedded 

memories, body biasing, clock gating, glitches, logic 

power, soft processors  
 

 

I. INTRODUCTION 

Field-Programmable Gate Arrays (FPGAs) are 

integrated circuits (ICs) that can be programmed to 

implement any digital circuit. The main difference 

between FPGAs and conventional fixed logic 

implementations, such as Application Specific Integrated 

Circuits (ASICs), is that the designer can program the 

FPGA on-site. Moreover, using an FPGA instead of a 

fixed logic implementation eliminates the non-recurring 

engineering (NRE) costs and significantly reduces time-

to-market. Hence, FPGAs are highly desirable for 

implementation of digital systems due to their flexibility, 
programmability and low end product life cycle and all 

this makes them ideal for prototyping, debugging, and for 

small to medium volume applications. FPGAs are slower 

and less efficient than fixed implementation, due to the 

added circuitry that is needed to make them very flexible. 

In FPGA, programmable switches controlled by 

configuration memory occupy a large area and add a 

significant amount of parasitic capacitance and resistance 

to the logic and routing resources. As a result, FPGAs are 

approximately 3 times slower, 20 times larger, and 12 

times less power efficient compared to ASICs 
[1].

 The area 

overhead, combined with research and development costs, 

increases the per-unit cost of FPGAs, which makes them 

less suited for high-volume applications. Moreover, the 

speed and power overhead precludes the use of FPGAs for 

high-speed or low-power applications. In more than 20 

years since the introduction of FPGA, research and 

development has produced dramatic improvements in 

FPGA speed and area efficiency, narrowing the gap 

between FPGAs and ASICs and making FPGAs the 
platform of choice for implementing digital circuits. 

FPGAs hold significant promise as a fast to market 

replacement for ASICs in many applications. A 

significant number of studies include focus on faster and 

more area efficient programmable routing resources. 

Some important advancements have also been made in 

respect of CAD tools that are used to map applications 

onto the programmable fabric of FPGA. The Versatile 

Place and Route (VPR) tool described in 
[2]

, yields 

significant improvements in performance by improving on 

the existing clustering, placement, and routing algorithms. 

Logic-to-memory mapping tools, described in 
[3]-[5]

, shows 

improvement in the area efficiency of FPGAs with 

embedded memories wherein parts of the application are 

packed into unused memories before mapping the rest of 

the application into logic elements. 

In recent years, the main focus of the research has been 
shifting to lower the power consumption. Power 

consumption is an important part of equation determining 

the product size, weight and efficiency. Unfortunately, the 

advantages of FPGAs are offset in many cases by their 

high power consumption and area. The improved 

reliability, lower operating and cooling costs, and the 

ever-growing demand for low-power portable 

communications and computer systems, is motivating new 

low power techniques, especially for FPGAs, which 

dissipate significantly more power than fixed-logic 

implementations. Indeed, the International Technology 

Roadmap for Semiconductors (ITRS) has identified low-

power design techniques as a critical technology need [5]. 

This paper aims to describe the general techniques used 

to reduce the power dissipation and review the work 

carried out in this area and has been organized in further 

four sections. The basic architecture and hardware 
structure of FPGA has been discussed in 2 followed by its 

logic resources architecture and routing resources 

architecture in 2.1 and 2.2. CAD tool for FPGAs along 

mailto:grovernr@rediffmail.com


 Reduction of Power Consumption in FPGAs - An Overview 51 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

with flow processes has been covered briefly in section 

2.3. In section 3, power dissipation in FPGAs - leakage 

and static power and dynamic power have been described. 

The section 4 of the paper describes the various general 

techniques to reduce the static and dynamic power in 

FPGAs. The paper in section 5 reviews the work carried 

out and various design techniques used for power 

reduction in FPGAs with the final conclusion and scope of 

work in the last section. 

  

 

II. FPGA ARCHITECTURE, ITS HARDWARE 

STRUCTURE 
FPGAs consist of a two-dimensional array of 

programmable logic blocks that are connected through a 

configurable interconnection fabric. Figure 1(a) provides 

an abstract view of an FPGA. As illustrated, pre-

fabricated routing tracks are arranged in channels that are 

interspersed between rows and columns of logic blocks. 

Today's commercial FPGAs use look-up tables (LUTs) as 

the base element for implementing combinational logic 

functions, and contain flip-flops for implementing 

sequential logic. A K-input LUT (K-LUT) is a small 

memory capable of implementing any logic function that 

uses, at most, K inputs. A simplified FPGA logic block is 

shown in Figure 1(b), comprising a 4-LUT along with a 

flip-flop.  Figure 1(c) shows the internal details of a 4-

LUT. 16 SRAM cells hold the truth table for the logic 

function implemented by the LUT. The LUT inputs, 

labeled f1 to f4, select a particular SRAM cell whose 

content is passed to the LUT output. 
 

 
Figure 1: (a) Abstract FPGA architecture 

 

 
Figure 1: (b) logic block; 

 

 
 

Figure 1: (c) LUT 

 

Modern FPGAs consist of programmable logic 

resources embedded in a sea of programmable 

interconnects. The programmable logic resources can be 

configured to implement any logic function, while the 

interconnects provide the flexibility to connect any signal 

in the design to any logic resource. The programming 

technology for the logic and interconnect resources can be 

Static Random Access Memory (SRAM), flash memory 

[6], or antifuse [7, 8]. SRAM-based FPGAs offer in-

circuit reconfigurability at the expense of being volatile, 

while antifuse are write-once devices. Flash-based FPGAs 

provide an intermediate alternative by providing 

reconfigurability as well as non-volatility. The most 

popular programming technology in state-of-the-art 

FPGAs is SRAM. 

Traditionally, FPGAs consist of input/output pads, 
logic resources, and routing resources. However, state-of-

the-art FPGAs usually include embedded memory, DSP 

blocks, Phase-Locked Loops (PLLs), embedded 

processors, and other special feature blocks, as shown in 

Figure 2. These features allowed FPGAs to be an 

attractive alternative for some SoPC designs. The next 

Sections shed light on some of the available commercial 

FPGA architectures and FPGA CAD flow. 

 

2.1 FPGA Logic Resources Architecture 
 

The logic blocks in FPGAs are responsible for 

implementing the functionality needed by each 

application. Increasing the functional capability of the 

logic blocks increases the number of  

 

 
 

Figure 2.: Modern FPGA fabric 

 



52 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

logic functions that can be packed into it. Moreover, 

increasing the size of logic blocks, i.e., increasing the 

number of inputs to each logic block, increases the 

number of logic functions performed by each logic block 

as well as improving the area/delay performance of the 

logic block 
[9]

. However, this comes on the expense of 

wasted resources because not all of the blocks will have 

all of their inputs fully utilized. 

Most commercial FPGAs employ look-up tables (LUTs) 

to implement the logic blocks. A k-input LUT consists of 

2
k
 configuration bits in which the required truth table is 

programmed during the configuration stage. The almost 

standard number of inputs for LUTs is four, which was 
proven optimum for area and delay objectives 

[10]
. 

However, this number can vary depending on the targeted 

application by the vendor. Moreover, modern FPGAs 

utilize a hierarchical architecture where every group of 

basic logic blocks is grouped together into a bigger logic 

structure, logic cluster. The remaining of this Section 

describes the programmable logic resources in two of the 

most popular commercial FPGAs. 

2.1.1 Altera Stratix III Logic Resources 
 

The logic blocks in Altera's Stratix III are called 

Adaptive Logic Modules (ALMs). An 8-input ALM 

contains a variety of LUT-based resources that can be 

divided between two adaptive LUTs 
[11]

. Being adaptive, 

ALMs can perform the conventional 4-input LUT 

operations as well as implementing any function of up to 

6-inputs and some 7-input functions. Besides the adaptive 

LUTs, ALMs contain two programmable registers, two 

dedicated full adders, a carry chain, a shared arithmetic 

chain, and a register chain. Using these components, 

ALMs can efficiently perform arithmetic and shift 
operations. A detailed view of an ALM is shown in Figure 

3. Every eight ALMs are grouped together to form a 

Logic Array Block (LAB). 

 

 

 

 

 

 
 

Figure 3: Altera's Stratix III ALM architecture 

 

 



 Reduction of Power Consumption in FPGAs - An Overview 53 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

 
Figure 4: Xilinx's Vertex-5 slice architecture 

 

 

2.1.2 Xilinx Virtex-5 Logic Resources 

 
The slice is the basic logic resource in Xilinx Virtex-5 

FPGAs. Slices consist of four LUTs, wide function 

multiplexers, and carry logic 
[12]

. Figure 4 shows the 

architecture of a typical Virtex-5 slice. The slices employ 

four 6-LUTs that are capable of performing any 6-input 

logic function. Functions with up to 8-inputs can be 

implemented using multiplexers to combine the output of 

two LUTs. Every two interconnected slices are grouped 

together in a Configurable Logic Block (CLB) 
[12]

. 
 

2.2 FPGA Routing Resources Architecture 

 
Routing resources in FPGAs can be divided into two 

components; segmented local routing and dedicated 

routing. Segmented local routing is used to provide 

connection among the logic blocks. As depicted in Figure 

5, the segmented wires are prefabricated in channels to 

provide programmable connections between switch blocks, 

connection blocks, and logic blocks. The number of wires 

in one channel is usually denoted by W 
[13]

. 

The I/O of the logic blocks are dynamically connected 

to the segmented routing channels on all four sides using 

connection blocks. The number of wires in each channel 

to which a logic block pin can connect to is called the 

connection block flexibility Fc. In addition, the switch 

blocks provide programmable connectivity between the 
horizontal and vertical wires. The switch block flexibility 

Fs is defined as the number of wires to which each 

incoming wire can connect to in a switch block. The 

segment length of a certain wire segment is defined as the 

number of logic blocks spanned by the routing wire. 

Modern FPGAs use a combination of wires of different 

segment lengths to achieve the optimum performance in 

terms of routability, delay, or both. 

Dedicated routing is used for global signals that fan out 

to a large number of logic blocks, e.g., clock and reset, 

thus providing low-skew. Moreover, some commercial 

FPGAs employ PLLs and Delay-Locked Loops (DLLs) 

for further skew reduction. Modern FPGAs have the 

flexibility to provide different clock domains inside the 
FPGA to enable asynchronous designs. 

 

 
 

Figure 5: Routing resources in island-style FPGAs 

 
2.3 CAD tools for FPGAs 

 



54 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

FPGAs are implemented using a huge number of 

programmable switches that are used to implement a 

certain logic function. The CAD tools of FPGAs 

transform the design, entered either as a schematic or 

using a hardware description language, to a stream of `1's 

and `0's that program the FPGA during the configuration 

time. The flow chart in Figure 6 shows the different steps 

involved in the CAD flow for a typical FPGA design. 

 

 
 

Figure 6: A typical FPGA CAD flow 

 

a) Logic Synthesis 

In the synthesis phase, the circuit description is 

converted to a netlist of basic logic gates. This phase is 

usually divided into two different stages; logic 

optimization and technology mapping 
[14-17]

. Logic 

optimization is a technology-independent stage that 

involves simplifying the logic function of the design 

without the use of any technology information. Any 

redundant logic is removed at this stage. The optimized 

user circuit is then mapped into LUTs and flip-flops in the 

technology mapping stage, where each k-bounded logic 

function in the circuit is mapped into a k-LUT. This step 

resolves to find a set of k-feasible cuts that include all the 

nodes in the circuit in such a way to minimize the delay, 

area, and/or power dissipation of the final implementation. 

The process of technology mapping is often treated as a 
covering problem. 

 

b) Packing 

The packing phase converts the netlist of LUTs and 

flip-flops into a netlist of logic locks. The input netlist is 

converted into clusters of logic blocks that can be mapped 

into the physical logic blocks of the FPGA. Most packing 

algorithms minimize the number of resulting logic blocks, 

the number of connections between them, and/or the delay 

along the critical path. The packing algorithm has to 

consider the physical limitations of the actual logic blocks 

of the FPGA in terms of the maximum number of LUTs in 

a logic block and the number of distinct input signals and 

clocks a logic block has. Packing algorithms can be 

categorized as either bottom-up 
[14, 18, 19, and 20]

 or top-down 
[21, 22

]. Bottom-up packing algorithms build each cluster 

individually around a seed LUT until the cluster is full. 
However, top-down packing approaches partition the 

LUTs into clusters by successive circuit subdivision. 

Bottom-up algorithms are much faster and simpler than 

top-down approaches because they only consider local 

connections. However, this comes at the expense of 

solution quality. 

 

c) Placement 

In the placement phase, the packed logic blocks are 

distributed among the physical logic blocks in the FPGA 

fabric. Placement algorithms try to minimize the delay 

along the critical path and enhance the resulting circuit 

routability. Available placement algorithms can be 

classified into three categories; min-cut [
23, 24]

, analytic 
[25, 

26]
, and simulated annealing 

[27, 28, 29]
 based algorithms. 

Most of the commercial placement tools for FPGAs 

employ simulated annealing-based algorithms because of 

their flexibility to adapt to a wide variety of optimization 

goals. Simulated annealing (SA) placement tools depend 

on the SA algorithm, which is derived from the annealing 

process used to cool molten metals 
[30]

.  

 

d) Timing Analysis 

Timing analysis 
[31]

 is used to guide placement and 

routing CAD tools in FPGAs to: (1) determine the speed 

of the placed and routed circuit and (2) estimate the slack 

of each source-sink connection during routing to identify 

the critical paths. Timing analysis is usually performed on 

a directed graph representing the circuit, where the nodes 

represent LUTs or registers and the edges represent 

connections. 

 
e) Routing 

The routing phase assigns the available routing 

resources in the FPGA to the different connections 

between the logic blocks in the placed design 
[28]

. The 

objective of a typical routing algorithm is to minimize the 

delay along the critical path and avoid congestions in the 

FPGA routing resources. Generally, routing algorithms 

can be classified into global routers and detailed routers. 

Global routers consider only the circuit architecture 

without paying attention to the number and type of wires 

available, while detailed routers assign the connections to 

specific wires in the FPGA. 

 

 
III. POWER DISSIPATION IN FPGAS 

First let us see what makes FPGAs to consume more 

power. As in all integrated circuits, FPGAs dissipate static 
and dynamic power. Static power is consumed due to 

transistor leakage and is dissipated when current leaks 

from the power supply to ground through transistors that 

are in the ―off-state‖ due to sub-threshold leakage (from 

source to drain), gate-induced drain leakage, and gate 

direct-tunneling leakage. Dynamic power is consumed by 

toggling nodes as a function of voltage, frequency, and 

capacitance and is dissipated when capacitances are 

charged and discharged during the operation of the circuit.  

FPGAs consume much more power than ASICs 

because they have a large number of transistors per logic 

function in order to program the device as explained 



 Reduction of Power Consumption in FPGAs - An Overview 55 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

above. Nevertheless, programmability is the essence of 

this technology and this overhead must be assumed. The 

extra circuitry that provides flexibility to an FPGA affects 

both the static and dynamic power dissipated by the 

FPGA. FPGA contains a large number of configuration 

bits, both within each logic element and in the 

programmable routing used to connect logic elements. 

Each of these configuration bits dissipates static power 

whereas an ASIC does not contain any such programming 

bits, and thus would consume significantly less static 

power than an FPGA. In addition, since the lookup-tables 

consume significantly more transistors than the 

corresponding logic in an ASIC, the static power 
dissipated in the logic is larger in an FPGA than in an 

ASIC. 

In both an ASIC and FPGA, connections between gates 

are associated with some amount of parasitic capacitance 

due to the metal wire used to implement the connection as 

well as the driver and driven transistors. However, as 

described above, a connection in an FPGA also contains a 

large number of programmable switches. These switches 

significantly increase the parasitic capacitance on each 

wire segment and charging and discharging of this 

parasitic capacitance consumes more dynamic power. For 

all the reasons outlined above, an FPGA is significantly 

less power-efficient than an ASIC.  

Tuan and Lai in 
[32]

 examined leakage in the Xilinx 

Spartan-3 FPGA, a 90nm commercial FPGA. Figure 7 

shows the breakdown of leakage in a Spartan-3 CLB, 

which is similar to the Virtex-4 CLB. Leakage is 

dominated by that consumed in the interconnect, 
configuration SRAM cells, and to a lesser extent, LUTs. 

Combined, these structures account for 88% of total 

leakage. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Leakage power breakdown in Xilinx Spartan-3 

 

 

Figure 8: Dynamic power breakdown in XilinxVirtex-II 

 

As pointed out in [32], the contents of an FPGA's 

configuration SRAM cells change only during the FPGA's 

configuration phase. Configuration is normally done once 

at power-up. Therefore, the speed performance of an 

FPGA's SRAM configuration cells is not critical, as it 

does not affect the operating speed of the circuit 

implemented in the FPGA. The SRAM cells can be 

slowed down and their leakage can be reduced or 

eliminated using previously-published low leakage 

memory techniques or by implementing the memory cells 

with high-VTH or long channel transistors. Leakage was 

not a primary consideration in the design of Spartan-3. If 

SRAM configuration leakage were reduced to zero, the 
Spartan-3 interconnect and LUTs would account for 55% 

and 26% of total leakage, respectively.  

A number of recent papers have considered the 

breakdown of dynamic power consumption in FPGAs 
[33, 

34, 35]
. In 

[35] 
Shan studied the breakdown of power 

consumption in the Xilinx Virtex-II commercial FPGA. 

The results are summarized in Figure 8. Interconnect, 

logic, clocking, and the I/Os were found to account for 

60%, 16%, 14%, and 10% of Virtex-II dynamic power, 

respectively. A similar breakdown was observed in 
[33]

. 

The FPGA power breakdown differs from that of custom 

ASICs, in which the clock network is often a major source 

of power dissipation 
[36]

. 

The dominance of interconnect in FPGA dynamic 

power is chiefly due to the composition of FPGA 

interconnect structures, which consist of pre-fabricated 

wire segments, with used and unused switches attached to 

each wire segment. Such attached switches are not present 
in custom ASICs, and they contribute to the capacitance 

that must be charged/ discharged in a logic transition. 

Furthermore, SRAM configuration cells and circuitry 

constitute a considerable fraction of an FPGA's total area. 

For example, 
[37]

 suggests that more than 40% of an 

FPGA's logic block area is SRAM configuration cells. 

Such area overhead makes wire lengths in FPGAs longer 

than wire lengths in ASICs. Interconnect thus presents a 

high capacitive load in FPGAs, making it the primary 

source of dynamic power dissipation. 

 
 

IV. POWER REDUCTION TECHNIQUES 

As stated above there are two primary types of power 

consumption in FPGAs: 1) Leakage and static power and 

2) dynamic power. The techniques that are commonly 

used to reduce these two types of power consumptions 

have been explored in the following sub-sections: 

 

4.1 Leakage and Static Power Reduction 

 
Vendors such as Altera and Xilinx incorporate various 

low-power device-level technologies in their latest FPGA 
devices. Traditional FPGAs and ASICs only used two 

oxide thicknesses (dual oxide): a thin oxide for core 

transistors and a thick oxide for I/O transistors. Moving 

toward high-performance 90 nm FPGAs, Xilinx integrated 

circuit (IC) designers started to adopt the use of a third-

gate oxide thickness (triple oxide) of midox in the 



56 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

transistors of the 90 nm Virtex™-4 FPGAs that allows a 

dramatic reduction in overall leakage, and hence static 

power, compared to other competitive FPGAs. Virtex-5 

FPGAs continue to deploy the triple oxide technology in 

the 65 nm process node to enable a significant lower 

leakage current, about 38% lower than what the industry 

expects for a 65 nm device. At the device level, Altera and 

Xilinx both utilize triple gate oxide technology, which 

provides a choice of three different gate thicknesses, to 

trade-off between performance and static power 
[38][39]

. In 

earlier technologies, only two thicknesses were available. 

Transistors with thicker oxide were used for the large, 

higher voltage tolerant transistors in the I/O blocks and 
the thinner ones were used everywhere else. The new 

medium thickness oxide transistors provide slightly less 

performance than thin oxide transistors, but leak 

significantly less power. These are used in the 

configuration memory and the switches that are controlled 

by this memory in the latest FPGAs. The oxide thickness 

does not affect the performance of the corresponding 

switches because the configuration memory remains static 

during the operation of the device.  

Two recent papers focused on optimizing leakage in the 

unused portion of an FPGA. Calhoun proposed the 

creation of fine-grained ―sleep regions", making it 

possible for a logic block's unused LUTs and flip-flops to 

be put to sleep independently 
[40]

. A more coarse-grained 

sleep strategy was proposed in 
[41]

, which partitioned an 

FPGA into entire regions of logic blocks, such that each 

region can be put to sleep independently. The authors 

restricted the placement of the implemented design to fall 
within a minimal number of the pre-specified regions, and 

studied the effect of the placement restrictions on design 

performance. 

One of few papers to address leakage in FPGA 

interconnect is 
[42]

, which applied well-known leakage 

reduction techniques to interconnect multiplexers. Four 

different techniques were studied. First, extra 

configuration SRAM cells were introduced to allow for 

multiple OFF transistors on unselected multiplexer paths. 

The intent is to take advantage of the ―stack effect", as 

illustrated in Figure 9(a). The left side of Figure 9(a) 

shows a typical routing switch multiplexer. Observe that 

there is a single OFF transistor on the unselected 

multiplexer path (highlighted). The right side of Figure 

9(a) shows the redundant SRAM cell approach. The 

unselected path contains two OFF transistors, which limits 

sub threshold leakage along the path.  A second approach 
described in 

[42]
 is to layout portion of the multiplexer in 

separate wells, allowing body-bias techniques to be used 

to raise the VTH of multiplexer transistors that are not 

part of the selected signal path [see Figure 9(b)]. Third, 
[42]

 

proposes negatively biasing the gate terminals of OFF 

multiplexer transistors [Figure 9(c)]. The negative gate 

bias leads to a significant drop in sub threshold leakage.  

Finally, 
[42]

 proposes using dual-VTH techniques, wherein 

a subset of multiplexer transistors are assigned high-VTH 

(slow/low leakage), and the remainder of transistors are 

assigned low-VTH (fast/leaky). The dual-VTH idea, 

shown in Figure 9(d), impacts FPGA router complexity, 

as the router must assign delay-critical signals to low-

VTH multiplexer paths. A more recent paper by Ciccarelli 

applies dual-VTH techniques to the routing switch buffers 

in addition to the multiplexers 
[43]

. 

 
a) Redundant SRAM Cell 

 

 
Figure 9: Multiplexer leakage reduction techniques 

 

In the following sub sections some of technologies 

which have been used to reduce the leakage power in 

FPGA are discussed 

 

4.1.1 Leakage Power Reduction in FPGAs 

Embedded Memories 

 
Recently, FPGA vendors have started to increase the 

size of embedded memory cells in their FPGAs. It can be 

noticed that on average, high-performance FPGAs have a 
ratio of memory bits to logic cells of about 54, i.e., for 

every logic cell in the FPGA, there are 54 memory bits. 

On the other hand, for the low-cost FPGAs, the ratio 

drops to about 27. However, it can be noticed that the 

trend is toward increasing the ratio of memory bits to 

logic cells in low-cost FPGAs.  It can be deduced that 

minimizing leakage power in the FPGA embedded 

memory is more beneficial than minimizing that of the 

logic cells. In 
[44]

 author proposed a CAD technique to 

reduce leakage power dissipation in FPGA embedded 

memory bits by adding path traversal and location 

assignment techniques in the embedded memory mapping. 

The authors assume that all the embedded memory cells 

can support the drowsy mode by having the ability to 



 Reduction of Power Consumption in FPGAs - An Overview 57 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

connect to two supply voltages VDDH and VDDL, a high 

and low supply voltage, respectively, as shown in Fig. 10. 

The flexibility to connect to either of the supply voltages 

is provided by two header PMOS devices that are 

controlled by two control signals. When the memory bit is 

operating at the low supply voltage, the bit will consume 

less leakage power, since leakage power is proportional to 

the supply voltage, while the cell still retains the stored 

data. This scheme for memory bits is referred to as 

drowsy memory. 

 

 
Figure 10. Drowsy Memory Architecture 

 

Several techniques have been proposed in the literature 

to reduce leakage power in memories using the drowsy 

scheme; however, they mainly targeted cache memories in 

processors 
[45]

. FPGA embedded memories have different 

characteristics when compared to cache memories. FPGA 

embedded memory accesses are statically scheduled and 

the data is stored statically, unlike cache memories that 

have variable latencies and dynamic data placement. 
Hence, the problem of minimizing leakage power in 

FPGA embedded memories helps in finding the best static 

layout of the data in the memory to maximize the leakage 

savings from putting the memories into a low-leakage 

state. The unused memory entries are placed in a sleep 

mode and are not to be brought out of that mode, while 

the used memory entries are put in a sleep mode when 

they are not accessed and waken up when needed.  

In 
[44]

 author proposed three different modes: sleep 

mode, drowsy mode, and live mode. The sleep mode is 

used for unused memory entries by shutting down the 

supply voltage from the unused memory bits. In this case, 

the two PMOS header devices (in Fig. 10) are turned off 

and the data stored in the memory is lost. In the study the 

author showed that just by putting the unused memory 

entries in the sleep mode (used-active), one can save an 

average of 36% of the memory leakage power without 
utilizing any scheme for dynamically waking up(or 

putting to sleep) the used memory entries. Moreover, on 

average, about 75% of leakage power savings in the 

embedded memories can be achieved just by using the 

minimum number of memory entries and turning off the 

unused entries (min-entry). It is noticed that the drowsy-

long scheme offers an additional 10% leakage power 

savings over the min-entry scheme. Moreover, the path-

place algorithm on an average achieves about 95% 

leakage power savings. Hence, it can be concluded that 

the two best memory layout techniques are the min-entry 

and path place techniques. The min-entry scheme offers 

very good leakage power savings in terms of both 

computational time and extra circuitry needed by the 

FPGA since it only supports active and off modes. On the 

other hand, the path-place scheme supports three memory 

modes: active, low leakage with data retention, and off 

modes.  

 

4.1.2 Leakage Power Reduction Using Static Dual 

Threshold Techniques 

 
Two architectures were proposed in 

[46]
 by the authors 

i.e. a homogeneous and a heterogeneous architectures, as 

shown in Fig. 11. The homogeneous architecture uses 

inside the cluster sub blocks of different VTH, while the 
heterogeneous architecture uses interleaved two types of 

clusters, where one of the clusters is composed of low 

VTH logic cells and the other consists of low and high 

VTH logic cells. The authors proposed a CAD framework 

that starts by assigning the whole design to high VTH 

logic cells. The algorithm then starts assigning the logic 

cells into low VTH cells as long as the cell has positive 

slack and the new path slack does not become negative. In 

the next stages, the algorithm clusters the logic cells into 

the clusters that correspond to the architecture being used. 

Finally, constrained placement is used to place the 

clustered designs into the FPGA architecture. It was 

noticed that both the homogeneous and heterogeneous 

architectures result in very close leakage power savings 

and delay penalties.  

 

4.1.3 Leakage Power Reduction Using Body-Biasing 

Techniques  
 

Body-biasing techniques are used to change the 

threshold voltage of the MOS devices. Increasing the 

body to source voltage (Vbs) of the MOS device from 

zero reduces the transistor delays on the expense of 

leakage power by reducing the device VTH 
[47]

. Reducing 

Vbs to a negative value increases the device VTH and 

hence reduces the leakage current and increases the device 

delay. Figure 12 plots the relative in delay and power in a 

StratixTM FPGA that shows that a 20% increase in delay 

can result in about 2.5× reduction in leakage power. In the 

study, the authors proposed the use of body biasing in 

FPGAs to slow down the cells on non critical paths to 

achieve a reduction in the sub threshold leakage power. 

The authors concluded that using a granularity that is 

equal to two clusters results in considerably sufficient 

amount of leakage power savings without incurring big 
penalties on both the delay and area of the FPGA.  

 

 
           Homogeneous                        Heterogeneous  

Figure 11 Dual Threshold Architectures 



58 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

 

 

 

 
Figure 12 Power and delay vs. body bias 

 

4.2 Dynamic Power Reduction 

 
Dynamic power is consumed by toggling nodes as a 

function of voltage, frequency, and capacitance and is 

dissipated when capacitances are charged and discharged 

during the operation of the circuit and consumed during 

switching events in the core or I/O of FPGA. The dynamic 

power consumption is generally modeled as below:  

 

ii

i

i fVCP .. 2  

where C,V and f represent capacitance, the voltage swing, 
and clock frequency of the resource i, respectively 

[48]
. 

The total dynamic power consumed by a device is the 

summation of the dynamic power of each resource. 

Because of programmability of FPGA the dynamic power 

is design-dependent and the factors that contribute to the 

dynamic power are: the effective capacitance of resources, 

the resources utilization, and the switching activity of 

resources 
[48], [49]

. The effective capacitance corresponds to 

the sum of parasitic effects due to interconnection wires 

and transistors. Since FPGA architecture usually provides 

more resources than required to implement a particular 

design, some resources are not used after chip 

configuration and they do not consume the dynamic 

power (this is referred to as resource utilization). 

Switching activity represents the average number of signal 

transitions in a clock cycle. Though generally it depends 

on the clock itself, it may also depend on other factors (e.g. 

temporal patterns of input signals). Hence, the above 
equation can be rewritten as:  

 


i

iii SUCfVP ....2  

where V is the supply voltage, f is the clock frequency, 
and C , U , and S , are the effective capacitance, the 

utilization, and the switching activity of each resource,  

respectively 
[48]

. 

The first comprehensive effort to develop a low-energy 

FPGA was by a group of researchers at UC Berkeley 
[50, 51, 

52]
. A power-optimized variant of the Xilinx XC4000 

FPGA [X4K 02] was proposed. Power reductions were 

achieved through significant changes in the logic and 

routing fabrics. First, larger, 5-input LUTs were used 

rather than 4-LUTs, allowing more connections to be 

captured within LUTs instead of being routed through the 

power- dominant interconnect. Second, a new routing 

architecture was deployed, combining ideas from a 2-

dimensional mesh, nearest-neighbor interconnect, and an 

inverse clustering scheme. Third, specialized transmitter 

and receiver circuitry were incorporated into each logic 

block, allowing low-swing signaling to be used. Last, 

double-edge-triggered flip-flops were used in the logic 

blocks, allowing the clock frequency to be halved, and 

reducing clock power. The main limitations of the work 

are: 1) The proposed architecture represents a ―point 

solution" in that the effect of the architectural changes on 

the area-efficiency, performance, and routability of real 

circuits was not considered; 2) The basis of the 

architecture is the Xilinx XC4000, which was introduced 

in the late 1980s and differs considerably from current 

FPGAs; 3) The focus was primarily on dynamic power 

and leakage was not a major consideration. 

Power trade-offs at the architectural level were 

considered in 
[34]

, which examined the effect of routing 
architecture, LUT size, and cluster size (the number of 

LUTs in a logic block) on FPGA power-efficiency. Using 

the metric of power-delay product, 
[34]

 suggests that 4-

input LUTs are the most power-efficient, and that logic 

blocks should contain twelve 4-LUTs. In these studies, 

despite their focus on power, power-aware CAD tools 

were not used in the architectural evaluation experiments, 

possibly affecting the architectural conclusions. Also, as 

in the UC Berkeley work 
[51]

, the architectures evaluated 

are somewhat out-of-step with current commercial FPGAs. 

For example, 
[34]

 suggests that a mix of buffered and un-

buffered bidirectional routing switches should be used. 

Modern commercial FPGAs no longer use un-buffered 

routing switches; rather, they employ unidirectional 

buffered switches. 

Dynamic power in CMOS circuits, computed through 

above equation depends quadratically on supply voltage. 

The quadratic dependence can be leveraged for power 
optimization, and this property has led to the development 

of dual or multi-VDD techniques, which have proved 

themselves effective at power reduction in the ASIC 

domain (e.g., 
[53, 54]

). In a dual-VDD IC, circuitry that is 

not delay-critical is powered by the lower supply voltage; 

delay- critical circuitry is powered by the higher supply. 

Level converters are generally needed when circuitry 

operating at the low supply drives circuitry operating at 

the high supply. In 
[55]

, the dual-VDD concept is applied 

to FPGAs. A heterogeneous architecture is proposed in 

which some logic blocks are fixed to operate at high-VDD 

(high speed) and some are fixed to operate at low-VDD 

(low-power, but slower). Figure 13(a) illustrates one of 

the pre-defined dual-VDD fabrics studied in 
[55]

. The 

power benefits of the heterogeneous fabric were found to 

be minimal, due chiefly to the rigidity of the fixed fabric 

and the performance penalty associated with mandatory 
use of low-VDD in certain cases. In 

[56]
, the same authors 

extended their dual-VDD FPGA work to allow logic 

blocks to operate at either high or low-VDD, as shown in 

Figure 13(b). Using such ―configurable" dual-VDD 

schemes, power reductions of 9-14% (versus single-VDD 

FPGAs) were reported. A limitation of 
[56]

 and 
[56]

 is that 

the dual-VDD concepts were applied only to logic, not 

interconnect. The interconnect, where most power is 

consumed, was assumed to always operate at high-VDD. 

This limitation is overcome in 
[41A]

 which apply dual-

VDD to both logic and interconnect. 



 Reduction of Power Consumption in FPGAs - An Overview 59 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

A dual-VDD FPGA presents a more complex problem 

to FPGA CAD tools. CAD tools must select specific 

LUTs to operate at each supply voltage, and then assign 

these LUTs to logic blocks with the appropriate supply. 

To address these issues, algorithms for dual- VDD 

mapping and clustering have been developed in 

conjunction with the architecture work mentioned above 
[57, 58]. 

 

 

 

 

 

 

 
 

Pre-defined dual-VDD FPGA 

 

 
b) Configurable dual-VDD logic block 

 

Figure 13: Dual -VDD FPGA structures. 

 

According to authors in 
[59]

, there are three major 

strategies in FPGA power consumption reduction. First, 

changes can be done at the system level (e.g. 

simplification of the algorithms used). Secondly, if the 

architecture of FPGA is already fixed, a designer may 

change the logic partitioning, mapping, placement and 

routing. Finally, if no changes at all are possible, 

enhancing operating conditions of the device may be still 

promising (this includes changes in the capacitance, the 

supply voltage, and the clock frequency). 
The various techniques used for reducing dynamic 

power are broadly covered under following schemes: 

 

 Reducing Dynamic Power on Clock Scheme  

 Reducing Logic Power 

 Reducing RAM Power 

 Reducing I/O Power 

 
The various techniques for dynamic power reduction 

under the above schemes are indicated in the following 

sections: 

 

4.2.1 Reducing Dynamic Power on Clock Scheme 
 

The following clock schemes are used to reduce 

dynamic power: 

- Clock Gating at Chip Level that prevents the 
logic from switching in case of system-level 

clock gating and controls input and output states 

and freezing clocks in case of using Flash 

*Freeze mode in Actel's flash-based FPGAs 

- Clock Gating at Design Level or at RTL level is 

a commonly used power-saving technique with 

two types of clock gating: latch-based and latch-

free clock gating. It is a straightforward 

substitution for RTL code. FPGA synthesis tools 

do not perform clock gating automatically. In this 

groups of flip-flops are identified that share a 

common enable term to implement 

combinational clock gating. Therefore, if a bank 
of flip-flops which share a common enable term 

use RTL clock gating. The flip-flops consume 

zero dynamic power as long as this enable term 

is false. However, one must be careful when 

implementing it because the skew between clock 

and enable signal could cause extra glitches. 

- Global Resource Power Reduction by reducing 

the key elements i.e. frequency, the number of 

clock spines, the fan-out and loading on the 

global networks.  

 

4.2.2 Reducing Logic Power 

 
Careful selection of appropriate arithmetic blocks is a 

source of large power savings in computation oriented 
designs. This section goes over the power consumption of 

various arithmetic blocks and provides recommendations 

for reducing logic power. 

 

 
ADDER AND MULTIPLIER 

The synthesis tool library offers a wide variety of 

arithmetic blocks with several architectures to better fit 

the area and performance needs of designs. The following 

architectures are used for multiplier implementation: 

Carry-Save-Adders multiplier (CSA), Charge State 

Multiplier (CSM), Wallace and Non Booth Encoding 

Wallace (NBW) architectures.  For adder, the 

architectures are the Forward Carry Look Ahead (CLF), 

the Brent and Kung (BK), the Carry Look-Ahead  (CLA), 

the CSM, and the Ripple (RPL) adders. These are also 

available through various online resources. In general, the 
power numbers in the arithmetic blocks are dominated by 

routing and correlate to a wide spread of the wire lengths.  

 

 
COUNTERS 

Counters are commonly used throughout designs for 

many different functions, such as keeping track of elapsed 

time, loading RAM address or data busses, controlling a 

state machine's next state, or output logic. The power 

profiles for gray, binary, and ring counters reveal that the 

binary counters offer the lowest power, followed by the 

gray, while the composition of ring counters has the worst 

power figure, mainly because of the large load on the 

clock. 

 

Finite State Machine (FSM) and Counter Encoding 



60 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

The selection of the state assignment depends on 

several parameters, such as the complexity of the state 

machine (the number of states), the number of paths and 

their lengths, the number of fork situations, and the 

complexity of the predicates on transitions between states. 

One should control the encoding scheme for low-power 

design. The most effective way is to write the RTL 

directly into the intended encoding as opposed to letting 

synthesis decide the state encoding, because one can 

explicitly select encoding to minimize the number of bit 

changes per transition. 

 

General Glitch Reduction Techniques on Logic 
Glitches are unwanted switching activities that occur 

before a signal settles to its intended value. On every 

active clock edge, glitches can occur within combinatorial 

logic. This is because every node has a different delay, 

which means combinatorial logic may change states 

several times before settling down. Glitches on a node are 

dependent on the logic depth to that node—the number of 

logic gates from the node to the primary inputs (or 

sequential elements). The deeper and wider the logic cone 

behind a node, the more it will glitch. Unstable logic 

expressions, unbalanced sets of paths driving a sensitive 

combinatorial cell, or a MUX select line that can toggle 

several times within a clock period are examples of 

sources of glitches. Some of the glitches are absorbed by 

the cell delays and do not propagate. Some others, 

however, do propagate and can affect the power 

dissipation. Some general glitch reduction techniques used 

are by: 
 

 Rearranging the logic 

 Partitioning and Using Different Optimization 

Level 

 Pipelining 

 Inserting AND Gate on the Net Driver 

 Logic Depth Reduction for Frequently Switching 

Signals 

 

4.2.3 Reducing RAM Power 
 

Analyzing power consumption during various 

operations brings to light several techniques for lowering 

the power contribution of the RAM blocks 

 The write operation consumes slightly less power 

than the read access, so changing the RAM 
operation could reduce power consumption and 

reduce peak power. 

 The study shows that the larger the Hamming 

distance between successive addresses, the larger 

the power consumption. So, it is recommended to 

reduce the Hamming distances between 

successive addresses in order to minimize the 

RAM power waste. 

 When the same clock edge is used for the read 

and write, peak power consumption can be high 

due to simultaneous accesses on dual-port or 

two-port RAMs. It is therefore recommended to 

use clocks with opposite edges for these ports.  

4.2.4 Reducing I/O Power 

 
The I/O power consumption is similar to logic power 

because it depends on switching, load capacitance, 

frequency, and voltage. By reducing any one of these 

components, one can reduce the I/O power. Here are some 

guidelines for reducing I/O power: 

 

 Choose low VCCI for I/O. Changing VCCI from 

3.3 V to 1.5 V can save up to 80% of your I/O 

power.  

 Reduce capacitive load to reduce the I/O power 

consumption. 

 Use differential I/O standards and resistively-

terminated I/O standards for highest toggling 

frequencies and single-ended I/O standards for 

low frequencies. The differential I/Os have 

higher static power, but have the lowest dynamic 

power because of the limited voltage swing. 

Having a choice as to which I/O standard to use, 

evaluate the options based on the anticipated 

activity of the I/Os.  

 Reduce the number of I/Os by eliminating I/Os 

that can be time multiplexed. 

 Use bus encoding that helps reduce the number 

of toggling bits and correlates successive values 

on the bus. 

 Divide the active outputs into two groups, some 

at the positive edge of the clock and others at the 

opposite edge. 
 

 

V. OVERVIEW OF POWER REDUCTION DESIGN 

TECHNIQUES 

The various techniques which have been used for 

power reduction in FPGAs are broadly covered at the 

following three design levels: 

 

a) System-Level  

b) Device-Level  

c) Architecture- and Circuit- Level  

 

5.1 Power Reduction at System Level Design: 

 
Looking at research works carried out to minimize 

power reduction techniques at system level design can be 

categorized in the following three parts:   

 Basic techniques: Following basic techniques 

have been explored so far at system level design: 

- Preferably use coarse-grained embedded 

blocks rather than the fine-grained 

configurable logic blocks in an FPGA, since 

the former are more power efficient than the 

latter for the same function 
[60]

. While using 

course-grained, it is to be ensured that power 

consumption for routing would not increase 

significantly. 

- To obtain the best trade-off in speed, area, 

power consumption, flexibility, and 

accuracy, word-length optimization can be 



 Reduction of Power Consumption in FPGAs - An Overview 61 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

applied. For adaptive filters and polynomial 

evaluations, improvements in power 

consumption of up to 98% (mean 87%) 

have been achieved 
[61]

. 

- Clock gating is a simple and effective 

method for reducing dynamic power 

consumption. It decreases dynamic power by 

eliminating unnecessary toggling on the 

outputs of flip-flops of a circuit, gates in the 

fan-out of the flip-flops, and clock signals. 

Fig. 14 depicts a classic example of clock 

gating. In part (a) of the figure, we see two 

register files on the left, each feeding a 
combinational logic circuit. The outputs of 

the two combinational logic circuits feed the 

inputs of a multiplexer. The multiplexer’s 

select signal, sel, selects which 

combinational circuit’s output is passed to 

the input of a destination register file. Part (b) 

of the figure shows the circuit after clock 

gating has been applied. The signal sel is 

used to derive a clock enable signal on 

clocks feeding the input register files. Power 

is reduced through several mechanisms. First, 

the capacitive loading on the clock network 

itself is reduced. Second, unnecessary 

toggling within the combinational circuits is 

eliminated. In particular, in the optimized 

circuit, toggling only occurs in the 

combinational circuit whose output is 

selected by the multiplexer to be passed to 
the destination register file. Clock gating has 

been used extensively in ASICs for power 

optimization. However, clock gating has not 

been explored in depth for FPGAs as well 

and is different from ASICs because of the 

fixed pre-fabricated clock interconnection 

network. It can be used to reduce dynamic 

power consumption to prevent signal 

transitions by disabling the clock for the 

inactive regions. The circuitry in an operator 

is gated when not in use if it can be 

combined with word-length optimization
 [62]

. 

- It is found that, at a given clock speed, 

pipelining which is a simple and effective 

way of reducing glitching can reduce the 

amount of energy per operation by between 

40% and 90% for applications such as 
integer multiplication, CORDIC, triple DES, 

and FIR filters 
[63]

. 

- By using dynamic voltage scaling to adapt 

the dynamic supply voltage to the FPGA as 

the temperature changes, to minimize power 

consumption. Power reduction between 4% 

and 54% can be achieved for various 

arithmetic circuits 
[64]

. 

 

 Techniques with run-time reconfigurability 

- Runtime reconfiguration with word-length 

optimization can be combined to adopt the 

smallest design at a given time, as long as 

the energy reduction in execution is greater 

than the energy overhead for reconfiguration 
[62]

. 

- In order to adapt to run-time conditions, run-

time reconfiguration can be applied to 

change a design. A more powerful but less 

energy efficient turbo coder can be used to 

maintain a fixed bit error rate, and vice versa 

when a communication channel becomes 

more noisy
 [65]

.  

   

 Low-power techniques for FPGA-based soft 
processors  

- Instruction set extensions based on an 

iterative improvement method to the Micro 

Blaze soft processor have been proposed in 
[66]

 wherein up to 40% reduction in energy 

and 12% reduction in peak power has been 

reported 

- Combined application of instruction 

recoding and power-aware scheduling 

techniques can be used to optimize a soft 

processor at multiple levels of abstraction. 

Dynamic power reduction of up to 74% has 

been reported in
 [67]

. 

 

 
 

a) Before Gating 

 

 
 

b) After Gating 

 

Figure 14: Clock Gating-An Example 

 

5.2 Power Reduction at Device Level Design: 

 
Vendors such as Altera and Xilinx incorporate various 

low-power device-level technologies in their latest FPGA 

devices. Traditional FPGAs and ASICs only used two 



62 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

oxide thicknesses (dual oxide): a thin oxide for core 

transistors and a thick oxide for I/O transistors. Moving 

toward high-performance 90 nm FPGAs, Xilinx integrated 

circuit (IC) designers started to adopt the use of a third-

gate oxide thickness (triple oxide) of midox in the 

transistors of the 90 nm Virtex™-4 FPGAs that allows a 

dramatic reduction in overall leakage, and hence static 

power, compared to other competitive FPGAs. The new 

medium thickness oxide transistors provide slightly less 

performance than thin oxide transistors, but leak 

significantly less power. These are used in the 

configuration memory and the switches that are controlled 

by this memory in the latest FPGAs. The oxide thickness 
does not affect the performance of the corresponding 

switches because the configuration memory remains static 

during the operation of the device,  

FPGA vendors in addition to smaller device geometries 

that reduce the average node capacitance, use a low-k 

dielectric between metal layers which reduce the parasitic 

capacitance and hence reduces the correspondingly 

dynamic power. Since the dynamic power has a quadratic 

relationship (CV2f ) with the supply voltage, it  can be 

reduced further by lowering the supply voltage. Xilinx 

reduces the core supply voltage from 1.2V being used in 

Virtex 4 to 1.0V in its Virtex 5 FPGAs that cuts core 

power significantly. Altera and Xilinx have also made a 

number of architecture-level changes to their latest 

devices to reduce static and dynamic power like both have 

recently increased the size of the LUTs (lookup tables) 

within the logic blocks. Since LUTs are implemented 

using smaller transistors (compared to transistors in the 
routing resources), which leak less and dissipate less 

dynamic power therefore, both static and dynamic power 

are reduced by increasing the size of the basic logic 

elements, from 4-input LUTs to 6 and 7-input LUTs, since 

more logic is implemented within each LUT and less 

routing is needed between the LUTs. Other features at 

architecture-level that reduce overall power are use of the 

embedded memories, adders, and multipliers. Although 

each of these functions can be implemented using the 

programmable logic fabric, its implementation as a fixed-

function embedded block is more power-efficient since 

circuitry to make it flexible is not needed, and it can be 

turned off when not used. Moreover, vendors have also 

modified their routing architectures that reduce the 

average capacitance of the routes, which improves both 

power and performance. 

A number of low-power techniques have also been 
incorporated into the commercial FPGA CAD tools. 

Detailed power models have been integrated within the 

Altera Quartus II 
[68]

 and Xilinx ISE CAD tools 
[69]

 that 

provide a spreadsheet utility to make early power 

predictions before the design is complete and a detailed 

power model that can be used when the design is 

complete. The detailed power models provide estimates 

after the application has been placed, routed, and 

simulated whereas early power estimates are based on 

estimated resource usage, I/O types, clock requirements, 

clock frequencies, and environmental conditions. The 

estimations from the detailed power models are more 

accurate than those from the early power models, since 

detailed capacitance, leakage, and switching activity 

information is known for each node in the application 

circuit. Power-aware CAD techniques have also been 

incorporated into the commercial CAD flows. Power is 

minimized during technology mapping, placement and 

routing by minimizing the capacitance of high-activity 

signals in Quartus II. As described in 
[70]

, power is also 

minimized by optimizing the mapping to the embedded 

memories and to the embedded DSP blocks. In ISE, 

power is minimized during placement and routing by 

minimizing the capacitance of high-activity signals. 

Dynamic power dissipation is further minimized by 
strategically setting the configuration bits within partially 

used (some inputs are not used) LUTs to minimize 

switching activity. Altera reports that Stratix III FPGAs 

are over 50% more power efficient than Stratix II FPGAs 
[68]

 by combining the above techniques and similarly, 

Xilinx reports that Virtex-5 FPGAs consume over 35% 

less dynamic power than Virtex-4 FPGAs, with even 

greater savings when embedded components are used 
[39]

. 

Xilinx also points out that low leakage techniques are 

already incorporated in their Virtex-4 FPGAs, resulting in 

70% lower static power consumption when compared 

with competing FPGAs.  

A low-power alternative to SRAM-based FPGAs is 

flash-based FPGA technology as flash-based memory 

dissipates significantly less leakage power compared to 

SRAM memory. Actel’s devices which are Flash-based 

FPGAs, are inherently more efficient and it is reported 

that their low-power FPGAs dissipate 4 times less leakage 
power than their nearest competitors

 [71]
.  

 

5.3 Power Reduction at Architecture- and Circuit- 

Level Design: 

 
A number of studies have investigated low-power 

FPGA architecture design. The authors in 
[72][73]

 have 

described energy-efficient FPGA routing architectures and 

low-swing signaling techniques to reduce power, whereas, 

a new FPGA routing architecture that utilizes a mixture of 

hardwired and traditional programmable switches is 

proposed In 
[74]

, which reduces static and dynamic power 

by reducing the number of configurable routing elements. 

The architecture and the circuit-level implementation of 

the FPGA is key in reducing power, since it directly 

affects the efficiency of mapping applications to FPGA 

resources, and the amount of circuitry to implement these 
resources. In 

[75]
, the author introduced the energy-

efficient modules for embedded components in FPGAs to 

reduce power by optimizing the number of connections 

between the module and the routing resources, and by 

using reduced supply voltage circuit techniques. A novel 

FPGA routing switch with high-speed, low-power, or 

sleep modes have been presented in 
[76]

. The switch 

reduces dynamic power for non timing critical logic and 

standby power for logic when it is not being used. The 

author reported lower energy up to 3.6 times than an 

ARM7 device, and up to 6 times lower energy than a 

C55X DSP, by using  several power reduction techniques, 



 Reduction of Power Consumption in FPGAs - An Overview 63 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

such as register file elimination and efficient instruction 

fetch that are proposed for a coarse-grain reconfigurable 

cell-based architecture in 
[77]

. Power-gating is applied to 

the switches in the routing resources to reduce static 

power and duplicate routing resources, that use either high 

or low Vdd, are used to reduce dynamic power in 
[78]

. The 

rest of this section describes two recent improvements: 

minimization of FPGA glitch power, and efficient FPGA 

clock network design. 

Dynamic power is a result of signal transitions between 

logic-0 and logic-1. These transitions can be split into two 

types: functional transitions and glitches. Functional 

transitions are those which are necessary for the correct 
operation of the circuit. Glitches, on the other hand, are 

transitions that arise from unbalanced delays to the inputs 

of a logic gate, causing the gate’s output to transition 

briefly to an intermediate state. Although glitches do not 

adversely affect the functionality of a synchronous circuit 

(as they settle before the next clock edge), they have a 

significant effect on power consumption. A recent study 

in 
[79]

 suggests that glitching accounts for 31% of dynamic 

power dissipation in FPGAs. Glitching occurs when 

values at the inputs of a LUT toggle at different times due 

to uneven propagation delays of those signals. If the 

arrival times are far enough apart, spurious transitions can 

be produced at the LUT output, as shown in Figure 15(a). 

Detailed timing information is used to configure these 

delay elements after place and route, so as to align the 

arrival times at the inputs of each logic element and this 

eliminates glitches as long as the arrival times can be 

aligned closely enough, as shown in Figure 15(b).The 
study in 

[79]
 proposes a method for minimizing glitching 

which involves adding configurable delay elements to the 

inputs to each logic element in the FPGA (Figure 16). The 

amount of elimination of glitching depends on several 

factors like resolution, maximum delay, location and 

amount of the programmable delay elements. On an 

average, the proposed technique eliminates 87% of the 

glitching that reduces overall FPGA power by 17% at the 

cost of the overall FPGA area by 6% and critical-path 

delay by less than 1% due to the added circuitry increases. 

The method can further be applied to all commercial 

FPGAs, and requires only minor changes to the CAD flow 

or the rest of the architecture. 

Glitch reduction techniques can be applied at various 

stages in the CAD flow. Since glitches are caused by 

unbalanced path delays to LUT inputs, it is natural to 

design algorithms that attempt to balance the delays. This 
can be done at the technology mapping stage 

[80]
, in which 

the mapping is chosen based on glitch-aware switching 

activities. Another approach operates at the routing stage 
[81]

, in which the faster arriving inputs to a LUT are 

delayed by extending their path through the routing 

network. Delay balancing can also be done at the 

architectural level. However, these approaches all incur an 

area or performance cost. Some works use flip-flop 

insertion or pipelining to break up deep combinational 

logic path which are the root of high glitch power. 

Circuits with higher degrees of pipelining tend to have 

lower glitch power because they have fewer logic levels, 

thus reducing the opportunity for delay imbalance 
[82]

. Flip 

flops with shifted-phase clocks can be inserted to block 

the propagation of glitches 
[83]

. Another work in 
[84]

 uses 

negative edge-triggered flip-flops in a similar fashion, but 

without the extra cost of generating additional clock 

signals. It is also possible to apply retiming to the circuit 

by moving flip-flops to block glitches 
[85]

. 

 

 
Figure 15(a) Circuit with glitch 

 

 
 

Figure 15(b) Glitch removed by delay input C 

 

The authors in their paper present a glitch reduction 

optimization algorithm based on don’t-cares that sets the 

output values for the don’t-cares of logic functions in such 

a way that reduces the amount of glitching 
[86]

. This 
process is performed after placement and routing, using 

timing simulation data to guide the algorithm.  

 

 
 

Figure 16 FPGA logic Block with configurable Delay elements 

 

The algorithm achieved an average total dynamic 

power reduction of 4.0%, with a peak reduction of 12.5%; 

glitch power was reduced by up to 49.0%, and 13.7% on 

average. Future work will involve integrating the 

algorithm into a fully power-aware FPGA CAD flow, and 

investigating whether other stages of the CAD flow could 
improve its effectiveness. This approach leverages the 

ability to re-program FPGA logic functions without 

altering the placement and routing. Since the placement 

and routing are maintained, this optimization has zero cost 

in terms of area and delay, and can be executed after 

timing closure is completed 



64 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

Another recent improvement is related to low-power 

clock network design. The basic element for 

implementing combinational logic in Virtex-5 is called a 

configurable logic block (CLB) that contains two SLICEs, 

each of which contain four 6-input look-up-tables (LUTs) 

and four registers. A Virtex-5 SLICE and CLB are shown 

in Figure 17. Each CLB’s inputs and outputs connect to a 

programmable interconnection network that permits CLBs 

to be connected to one another, as needed for the design 

implemented in the FPGA. In addition to CLBs, the 

Virtex-5 fabric contains large hard-IP blocks, such as 

block RAMs and DSPs, as well as tiles for I/O, clock 

management and varied other tiles. The Virtex-5 FPGA is 
designed to accommodate many different clock signals. 

Global clock buffers (BUFGs) within Virtex-5 receive 

clock signals, from either external or internal sources, and 

feed such signals into the dedicated global clock 

interconnection network. The global clock interconnection 

network distributes clock signals throughout the FPGA 

with low- skew, low-jitter and low-power. Each Virtex-5 

chip contains 32 global clock buffers and therefore, can 

support the presence of 32 global clock signals in the 

design. Instead, the Virtex-5 fabric is partitioned into 

clock regions for the purposes of clock distribution. Clock 

regions in Virtex-5 are 20 CLBs tall and span half of the 

Virtex-5 die horizontally. Up to 10 global clock signals 

may be fed into any given region. The 10 global clocks 

within a region may be selected from any of the 32 global 

clock signals present in the design. Figure 18 indicates the 

eight regions in the Virtex-5 LX30 FPGA; larger 

members of the Virtex-5 family will contain more regions. 
It can be observed that up to 10 clock signals, driven by 

32 BUFGs, are selected to be driven into the clock region. 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 Virtex 5 FPGA 

 

 
 

Figure 18 Clock Region in Virtex 5 

Clock gating involves selectively disabling the clock 

signal from reaching sequential elements in the design. 

Here, we introduce two clock enable mechanisms built-in 

to Virtex-5 that may be used for realizing clock gating. 

Figure 19(a) shows that the registers within a SLICE have 

a clock enable pin, permitting clock enables to be 

implemented at a fine level of granularity. All registers in 

the SLICE must receive the same clock enable signal. 

Figure 19(b) depicts that the global clock buffer (BUFG) 

that drives clock signals into the dedicated clock 

interconnection network has an enable pin.  

Figure 20 shows a detailed view of the interconnect 

structure within a clock region. There are 10 root spines 
(shown as dark lines in the figure) horizontally crossing 

the center of the region 2 At the intersection of each 

column, each horizontal root spine can be programmably 

connected to two vertical spines: one traveling north for 

the top-half of the region, and one traveling south for the 

bottom-half of the region. The vertical spines are shown 

as vertical dashed lines in Figure 20. Since there are 10 

horizontal root spines in a region, there are 20 vertical 

spines for each column of the region. The logic blocks in 

the region receive their clock signals from the vertical 

spines. Each upper or lower vertical spine corresponds to 

a single horizontal root spine. Every horizontal root spine 

can be driven by one of 32 global clock buffers (BUFGs) 

The power consumption of a clock signal within a clock 

region is mainly determined by the number of vertical 

spines connected to the root spine. A root spine is only 

connected to a vertical clock spine if the placement 

necessitates it. If a horizontal root spine carries a clock 
signal, clkA, connections to a vertical spine will only 

happen for those half-columns containing a load of clkA. 

Vertical clock spines contribute significantly to the 

capacitance of the clock signal, thereby affecting clock 

power. Indeed, the total power consumption for a clock 

signal is strongly tied to the sum of the number of vertical 

spines used in all the clock regions within which the load 

components of the clock are placed. Roughly 90% of 

clock network capacitance is contributed by vertical 

spines in typical designs. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Figure 19 Clock Enable Options 

 



 Reduction of Power Consumption in FPGAs - An Overview 65 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

 
Figure 20 Clock Region Interconnect Detail 

 

For clock-aware FPGA placement, the only works to 

consider CAD and architecture for reducing FPGA clock 

net work power are those of Lamoureux and Wilton 
[87, 88]

, 

and the very recent paper by Vorwerk et al. at Actel 
[88]

. 
Modern FPGAs are partitioned into regions, with 

limitations on the number of clock signals that may be 

routed into any given region. The placer in 
[89]

 minimizes 

the number of regions spanned by a clock network and 

also minimizes the number of resources used within 

regions, thereby reducing clock routing capacitance.  

In 
[90]

, clock network power in field-programmable gate 

arrays (FPGAs) is considered and two complementary 

approaches for clock power reduction in the Xilinx 

RVirtexTM-5 FPGA are presented. In this paper, the 

authors do not consider which clocks should be routed on 

global versus regional clock resources and the placer 

assumes such decisions have already been made. However, 

like 
[87]

, the placer does consider minimizing the clock 

network resources used within a region, albeit using what 

can be viewed as an extension of the placement algorithm 

in 
[87]

. The approaches are unique in that they leverage 
specific architectural aspects of Virtex-5 to achieve 

reductions in dynamic power consumed by the clock 

network. The first approach comprises a placement-based 

technique to reduce interconnect resource usage on the 

clock network, thereby reducing capacitance and power 

(up to 12%). The second approach borrows the ―clock 

gating‖ notion from the ASIC domain and applies it to 

FPGAs. Clock enable signals on flip-flops are selectively 

migrated to use the dedicated clock enable available on 

the FPGA’s built-in clock network, leading to reduced 

toggling on the clock interconnect and lower power (up to 

28%). Power reductions are achieved without any 

performance penalty, on average. 

It is observed from the literature that the dynamic 

power consumption is supposed to increase linearly with 

changes of clock frequency and size of a design. It was 

observed that with the clock frequency decrease the effect 

of the design size on power consumption gets decreased 
[90]

.  For example, for 2MHz clock frequency the total 

dynamic power consumption for designs with 3 and 24 

copies of EWMA filter is equal to 26mW and 40mW, 

respectively. However, for the clock frequency of 20MHz, 

the total dynamic power consumption for the same 

designs is equal to 63mW and 238mW, respectively. 

FPGA designs can be enlarged with a disproportionally 

low dynamic power increase as long as the device 

operates at low frequencies. Only at the highest 

frequencies, the dynamic power changes proportionally to 

the design area. 

The usage of multiple clock domains is a well known 

technique that allows performance increase, and power 

and/or energy decrease. This is only discussed at low level 

of designing process earlier. The concept of multiple 

clock domains was implemented at a high-level of 

designing process, the dynamic power is more important 

from the designer’s perspective as it can be 

controlled/reduced even at the system level by applying 

proper design methodologies
 [91]

.  

Although designs occupying a large portion of FPGA 
resources, map, place and route tools try to achieve 

desired performances by spreading the logic of each 

particular clock domain over a wider area of the chip, but 

this may increase the power consumption since additional 

routing resources must be used to interconnect relevant 

logic. However, as seen in 
[91]

, even for large designs that 

utilize 41% and 59% of available slices, a significant 

power consumption reduction is still possible. The 

obvious fact that lower clock frequencies reduce dynamic 

power can be supplemented with some additional 

observations. First, point to notice was that when the 

clock frequency decreases, the size of a design becomes 

almost unimportant (from the perspective of dynamic 

power consumption).  

It is further recommended to conveniently maintain the 

same performance of a particular design by reducing its 

clock frequency and by introducing the increased level of 

parallelism that allow more operations executed 
simultaneously within one clock cycle while maintaining 

the same energy per operation. Though the hardware 

resources are significantly increased (due to additional 

hardware resources required by the parallelism 

introduced), the dynamic power consumption increase can 

be negligible (if a sufficiently low clock frequency is 

applied). Although generally small FPGA chips should be 

used for small designs, the advantages of large FPGAs 

should not be ignored.  

Following three parts described in the research works in 
[87] [88]

 examine the trade-off between the flexibility of 

FPGA clock networks and overall power consumption. 

 

- A parameterized framework for describing a 

wide range of FPGA clock networks.  

- A comparison of clock aware placement 

techniques to determine their effectiveness: 
since clock networks impose hard 

constraints on the placement of logic blocks 

within the FPGA, a good clock-aware 

placement algorithm must obey these 

constraints and also optimize for speed, 

routability, and power consumption.  

- Several techniques for combining these 

objectives are evaluated, in terms of their 

ability to find a placement that is fast, energy 

efficient, and legal.  

 

 



66 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

VI. CONCLUSION 

Trends in technology scaling imply a drastic increase in 

leakage power and a steady increase in dynamic power 

with each successive process generation. Field-

programmable gate arrays (FPGAs) require considerable 

hardware overhead to offer programmability, making 

them less power-efficient than custom ASICs for 

implementing a given logic circuit. The huge numbers of 

transistors on the largest FPGA chips suggest that the 

power trends associated with scaling may impact FPGAs 

more severely than custom ASICs. Despite this, until 

recently, the majority of published research on FPGA 

CAD and architecture, as well as the focus of the 
commercial vendors, has been on improving FPGA speed 

and density. Power management in FPGAs will be 

mandatory to ensure correct functionality, provide high 

reliability, and to reduce packaging costs. Furthermore, 

lower power is needed if FPGAs are to be a viable 

alternative to ASICs in low-power applications, such as 

battery-powered electronics. 

This paper summarizes the different works that have 

been carried out and various techniques used at system, 

device, and architecture and circuit level to reduce the 

power consumption of FPGAs. It describes many of the 

significant improvements which have been made to 

improve power and energy efficiency of FPGAs that 

ranges from low level processes and circuit design 

techniques to high level techniques. Although significant 

improvements have already been made, many 

opportunities to further reduce power in FPGAs remain. 

Three areas that we feel are particularly fertile are glitch, 
low-power clock network design and leakage optimization. 

FPGAs with embedded processors and soft-processors are 

already available. This introduces similar system-level 

tradeoffs and the potential for significant power savings. 

Research targeting low-power system-level benchmarks is 

also required. While further improvements will likely be 

made at all levels, there seems to be significant potential 

for power savings at the system level. At the system level, 

power reduction can be obtained by optimizing 

management and scheduling of system resources.  

Continued advances in low power software and hardware 

will open the door for FPGAs entering new power-

sensitive markets 

 

 

REFERENCES 

[1] I. Kuon and J. Rose, ―Measuring the Gap Between 
FPGAs and ASICs,‖ ACM/SIGDA International 

Symposium on Field-Programmable Gate Arrays, pp. 

21-30, 2006. 

[2] V. Betz., J. Rose, and A. Marquardt, ―Architecture and 

CAD for deep-submicron FPGAs,‖ Kluwer Academic 

Publishers, 1999. 

[3] J. Cong and S. Xu, Technology mapping for FPGAs 

with embedded memory blocks, in ACM/SIGDA 

International Symposium on Field-Programmable 

Gate Arrays (FPGA), pp.179-188, 1998 

[4] S. J. E. Wilton, ―SMAP: heterogeneous technology 

mapping for area reduction in FPGAs with embedded   

memory arrays,‖ in ACM/SIGDA International 

Symposium on Field-Programmable Gate Arrays 

(FPGA), pp. 171-178, 1998. 

[5] International Technology Roadmap for 

Semiconductors, ―International technology roadmap 

for semiconductors 2005,‖ 2005. 

[6] K. J. Han, N. Chan, S. Kim, B. Leung, V. Hecht, B. 

Cronquist, D. Shum, A. Tilke, L. Pescini, M. 

Stiftinger, and R. Kakoschke, ―Flash-based Field 

Programmable Gate Array Technology With Deep 

Trench Isolation," in Proc. of IEEE Custom Integrated 

Circuits Conf., 2007, pp. 89-91. 

[7] S. D. Brown, ―An Overview of Technology, 
Architecture and CAD Tools for Programmable Logic 

Devices," in Proc. of IEEE Custom Integrated Circuits 

Conf., 1994, pp. 69-76. 

[8] J. Greene, E. Hamdy, and S. Beal, ―Antifuse Field 

Programmable Gate Arrays," Proc. IEEE, vol. 81, no. 

7, pp. 1042-1056, July 1993. 

[9] E. Ahmed and J. Rose, ―The Effect of LUT and 

Cluster Size on Deep Submicron FPGA Performance 

and Density," in Proc. of ACM Intl. Symp. on Field 

Programmable Gate Arrays, 2000, pp. 3-12. 

[10] J. Rose, R. J. Francis, D. Lewis, and P. Chow, 

―Architecture of Field-Programmable Gate Arrays: 

The Effect of Logic Block Functionality on Area 

Efficiency," IEEE J. Solid-State Circuits, vol. 25, no. 

5, pp. 1217-1225, Oct.1990. 

[11] Altera Corp. Stratix III Device Handbook. [Online]. 

Available: 

http://www.altera.com/literature/hb/stx3/stratix3 
handbook.pdf 

[12] Xilinx Inc. Vertix-5 FPGA User Guide. [Online]. 

Available: 

http://www.xilinx.com/support/documentation/user 

guides/ug190.pdf  

[13] J. Rose and S. Brown, ―Flexibility of Interconnection 

Structures for Field- Programmable Gate Arrays," 

IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 277-

282, 1991. 

[14] J. Cong and M. Smith, ―A Parallel Bottom-Up 

Clustering Algorithm with Applications to Circuit 

Partitioning in VLSI Design," in Proc. of IEEE/ACM 

Design Automation Conf., 1993, pp. 755-760. 

[15] J. Cong, J. Peck, and Y. Ding, ―Rasp: A general logic 

synthesis system for SRAM-based FPGAs," in Proc. 

of IEEE/ACM Design Automation Conf., 1996, pp. 

137-143. 
[16] J. Cong, C. Wu, and Y. Ding, ―Cut ranking and 

pruning: Enabling a general and efficient FPGA 

mapping solution," in Proc. of ACM Intl. Symp. on 

Field Programmable Gate Arrays, 1999, pp. 29-35. 

[17] A. Ling, D. P. Singh, and S. D. Brown, ―FPGA 

technology mapping: A study of optimality," in Proc. 

of IEEE/ACM Design Automation Conf., 2005, pp. 

427-432. 

[18] A. Marquardt, V. Betz, and J. Rose, ―Using Cluster-

Based Logic Blocks and Timing-Driven Packing to 

Improve FPGA Speed and Density," in Proc. Of ACM 

Intl. Symp. on Field Programmable Gate Arrays, 1999, 

http://www.xilinx.com/support/documentation/user%20guides/ug190.pdf
http://www.xilinx.com/support/documentation/user%20guides/ug190.pdf


 Reduction of Power Consumption in FPGAs - An Overview 67 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

pp. 37-46. 

[19] J. Cong, L. Hargen, and A. B. Kahng, ―Random 

Walks for Circuit Clustering," in Proc. of IEEE Intl. 

Conf. on Application Specific Integrated Circuits, 

1991, pp. 14-21. 

[20] J. Cong and S. K. Lim, ―Edge Separability Based 

Circuit Clustering with Application to Circuit 

Partitioning," in Proc. of IEEE/ACM Asia South 

Pacific Design Automation Conf., 2000, pp. 429-434. 

[21] L. W. Hagen and A. B. Kahng, ―Combining Problem 

Reduction and Adaptive Multi-Start: a New 

Technique for Superior Iterative Partitioning," IEEE 

Trans. Computer-Aided Design, vol. 16, no. 7, pp. 
709-717, July 1997. 

[22] D. J.-H. Huang and A. B. Kahng, ―When Clusters 

Meet Partitions: New Density-Based Methods for 

Circuit Decomposition," in Proc. of European Design 

and Test Conf., 1995, pp. 60-64. 

[23] A. E. Dunlop and B. W. Kernighan, ―A Procedure for 

Placement of Standard Cell VLSI Circuits," IEEE 

Trans. Computer-Aided Design, vol. 4, no. 1, pp. 92-

98, 1985. 

[24] D. J.-H. Huang and A. B. Kahng, ―Partitioning-Based 

Standard-Cell Global Placement with an Exact 

Objective," in Proc. of ACM Intl. Symp. on Physical 

Design, 1997, pp. 18-25. 

[25] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. 

Antreich, ―GORDIAN: VLSI Placement by Quadratic 

Programming and Slicing Optimization," IEEE Trans. 

Computer-Aided Design, vol. 10, no. 3, pp. 356-365, 

Mar. 1991. 
[26] A. Srinivasan, K. Chaudhary, and E. S. Kuh, ―Ritual : 

A Performance Driven Placement Algorithm for Small 

Cell ICs," in Proc. of Intl. Conf. on Computer Aided 

Design, 1991, pp. 48-51. 

[27] A. Marquardt, V. Betz, and J. Rose, ―Timing-Driven 

Placement for FPGAs," in Proc. of ACM Intl. Symp. 

on Field Programmable Gate Arrays, 2000, pp. 203-

213. 

[28] V. Betz, J. Rose, and A. Marquardt, Architecture and 

CAD for Deep Submicron FPGAs. Norwell, MA: 

Kluwer Academic Publishers, 1999. 

[29] C. Sechen and A. Sangiovanni-Vincentelli, ―The 

Timber Wolf Placement and Routing Package," IEEE 

J. Solid-State Circuits, vol. 20, no. 4, pp. 510-522, Apr. 

1985. 

[30] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, 

―Optimization by Simulated Annealing," Science, vol. 
220, 4598, pp. 671-680, 1983. 

[31] R. B. Hitchcock, ―Timing Verification and the 

Timing Analysis Program," in Proc. of IEEE/ACM 

Design Automation Conf., 1982, pp. 594-604. 

[32] T. Tuan and B. Lai. ―Leakage Power Analysis of a 

90nm FPGA". In: IEEE Custom Integrated Circuits 

Conference, pp. 57-60, San Jose, CA, 2003. 

[33] K. Poon, A. Yan, and S. J. E. Wilton. ―A Flexible 

Power Model for FPGAs". In: International 

Conference on Field-Programmable Logic and 

Applications, pp. 312-321, Montpellier, France, 2002. 

[34] F. Li, D. Chen, L. He, and J. Cong. ―Architecture 

Evaluation for Power-Efficient FPGAs". In: 

ACM/SIGDA International Symposium on Field 

Programmable Gate Arrays, pp. 175-184, Monterey, 

CA, 2003. 

[35] L. Shang, A. Kaviani, and K. Bathala. \Dynamic 

Power Consumption in the Virtex-II FPGA Family". 

In: ACM/SIGDA International Symposium on Field 

Programmable Gate Arrays, pp. 157{164, Monterey, 

CA, 2002. 

[36] G. Yeap. Practical Low Power Digital VLSI Design. 

Kluwer Academic Publishers, Boston, MA, 1998. 

[37] A. Ye, J. Rose, and D. Lewis. ―Using Multi-Bit 

Logic Blocks and Automated Packing to Improve 
Field-Programmable Gate Array Density for 

Implementing Datapath Circuits". In: IEEE 

International Conference on Field-Programmable 

Technology, pp. 129-136, Brisbane, Australia, 2004. 

[38] Altera, ―Quartus II Handbook,‖ Vol. 3, Chapter 10, 

2007 

[39] Xilinx, ―Power Consumption in 65nm FPGAs,‖ 2007. 

[40] B. Calhoun, F. Honore, and A. Chandrakasan. 

―Design Methodology for Fine-Grained Leakage 

Control in MTCMOS". In: ACM/IEEE International 

Symposium on Low-Power Electronics and Design, 

pp. 104-109, Seoul, Korea, 2003. 

[41] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, 

M. Irwin, and T. Tuan. ―Reducing Leakage Energy in 

FPGAs Using Region-Constrained Placement". In: 

ACM/SIGDA International Symposium on Field 

Programmable Gate Arrays, pp. 51-58, Monterey, CA, 

2004. 
[42] A. Rahman and V. Polavarapuv. ―Evaluation of Low-

Leakage Design Techniques for Field-Programmable 

Gate Arrays". In: ACM/SIGDA International 

Symposium on Field Programmable Gate Arrays, pp. 

23-30, Monterey, CA, 2004. 

[43] L. Ciccarelli, A. Lodi, and R. Canegallo. ―Low 

Leakage Circuit Design for FPGAs". In: IEEE Custom 

Integrated Circuits Conference, pp. 715-718, Orlando, 

FL, 2004. 

[44] Meng Y, Sherwood T, Kastner R. Leakage power 

reduction of embedded memories on FPGAs through 

location assignment. In: Proceedings of Design 

Automation Conference (DAC). 2006:612–617 

[45] Kim NS, Flautner K, Blaauw D, et al. Circuit and 

micro architectural techniques for reducing cache 

leakage power. IEEE Trans Very Large Scale 

Integration (VLSI) Syst. 2004;12: 167–184. 
[46] Kumar A, Anis M. Dual-threshold CAD framework 

for sub threshold leakage power aware FPGAs. IEEE 

Trans Computer Aided Des Integrated Circ Syst. 

2007;26:53–66. 

[47] Lewis D, Ahmed E, Cashman D, et al. Architectural 

enhancements in Stratix-IIITM and Stratix IVTM. In: 

Proceedings of FPGA. 2009:33–41 

[48] L. Shang, A. S. Kaviani, and K. Bathala, ―Dynamic 

Power Consumption in Virtex-II FPGA Family‖, 

proceedings of the 2002 ACM/SIGDA 10th 

International Symposium on Field-Programmable 

Gate Arrays, pages157 – 164. ACM Press, 2002 



68 Reduction of Power Consumption in FPGAs - An Overview  

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

[49] V. Degalahal and T. Tuan, ―Methodology for high 

level estimation of FPGA power consumption‖, 

Design Automation Conference, 2005. Proceedings of 

the ASP-DAC 2005. Asia and South Pacific, Volume 

1, 18-21 Jan. 2005 Page(s):657 – 660 Vol. 1. 

[50] E. Kusse and J. Rabaey. ―Low-Energy Embedded 

FPGA Structures". In:  ACM/IEEE International 

Symposium on Low-Power Electronics Design,  pp. 

155-160, Monterey, CA, 1998. 

[51] V. George, H. Zhang, and J. Rabaey. ―The Design of 

a Low Energy FPGA". In: ACM International 

Symposium on Low Power Electronics and Design, pp. 

188-193, San Diego, CA, 1999. 
[52] V. George and J. Rabaey. Low-Energy FPGAs: 

Architecture and Design. Kluwer Academic 

Publishers, Boston, MA, 2001. 

[53] D. Nguyen, A. Davare, M. Orshansky, D. Chinnery, 

B. Thompson, and K. Keutzer. ―Minimization of 

Dynamic and Static Power Through Joint Assignment 

of Threshold Voltages and Sizing Optimization". In: 

ACM/IEEE International Symposium on Low Power 

Electronics and Design, pp. 158-163, Seoul, Korea, 

2003. 

[54] A. Srivastava, D. Sylvester, and D. Blaauw. ―Power 

Minimization Using Simultaneous Gate Sizing, Dual-

Vdd and Dual-Vth Assignment". In: ACM/IEEE 

Design Automation Conference, pp. 783-787, San 

Diego, CA, 2004. 

[55] F. Li, Y. Lin, L. He, and J. Cong. ―Low-Power FPGA 

Using Pre-Defined Dual-Vdd/Dual-Vt Fabrics". In: 

ACM/SIGDA International Symposium on Field 
Programmable Gate Arrays, pp. 42-50, Monterey, CA, 

2004. 

[56] F. Li, Y. Lin, and L. He. ―FPGA Power Reduction 

Using Configurable Dual-Vdd". In: ACM/IEEE 

Design Automation Conference, pp. 735-740, San 

Diego, CA, 2004. 

[57] D. Chen, J. Cong, F. Li, and L. He. ―Low-Power 

Technology Mapping for FPGA Architectures with 

Dual Supply Voltages". In: ACM/SIGDA 

International Symposium on Field Programmable Gate 

Arrays, pp. 109-117, Monterey, CA, 2004  

[58] D. Chen and J. Cong. ―Register Binding and Port 

Assignment for Multiplexer Optimization". In: 

IEEE/ACM Asia and South Pacific Design 

Automation Conference, pp. 68-73, Yokohama, Japan, 

2004. 

[59] H. G. Lee, S. Nam, and N. Chang, ―Cycle-accurate 
energy measurement and high-level energy 

characterization of FPGAs‖, Quality Electronic 

Design, 2003. Proceedings. Fourth International 

Symposium on 24-26 March 2003, Page(s):267 – 272 

[60] I. Kuon and J. Rose, ―Measuring the gap between 

FPGAs and ASICs,‖ IEEE Trans. on Computer-Aided 

Design, vol. 26, no. 2, pp. 203-215, Feb. 2007. 

[61] G. Constantinides, ―Word-length optimization for 

differentiable nonlinear systems,‖ ACM Trans. on 

Design Automation of Electronic Sys., vol. 11, no. 1, 

pp. 26-43, 2006. 

[62] W.G. Osborne, W. Luk, J.G.F. Coutinho and O. 

Mencer, ―Power and branch aware word-length 

optimization,‖ Proc. IEEE Symp. on Field-Prog. 

Custom Computing Machines, IEEE Computer 

Society Press, 2008. 

[63] S.J.E. Wilton, S-S. Ang, and W. Luk. ―The impact of 

pipelining on energy per operation in field 

programmable gate arrays‖. In Proc. Field Prog. Logic 

and Applications, LNCS 3203, pp. 719–728, 2004. 

[64] C.T. Chow et al, ―Dynamic voltage scaling for 

commercial FPGAs,‖ Proc. IEEE Int. Conf. on Field 

Prog. Technology, 2005. 

[65] J, Liang, R. Tessier and D. Goeckel, ―A dynamically 

reconfigurable power efficient turbo coder,‖ Proc. 
IEEE Symp. on Field-Prog. Custom Computing 

Machines, IEEE Computer Society Press, pp. 91-100, 

2004. 

[66] P. Biswas et al, ―Performance and energy benefits of 

instruction set extensions in an FPGA soft core,‖ Proc. 

Int. Conf. on VLSI Design, pp. 651-656, 2006. 

[67] R. Dimond, O. Mencer and W. Luk, ―Combining 

instruction coding and scheduling to optimize energy 

in system-on- FPGA,‖ Proc. IEEE Symp. on Field-

Prog. Custom Computing Machines, IEEE Computer 

Society Press, 2006. 

[68] Altera, ―Quartus II Handbook,‖ Vol. 2, Chapter 9, 

2007. 

[69] Xilinx, ―Optimizing FPGA power with ISE design 

tools,‖ Xcell Journal, Issue 60, pp. 16-19, 2007. 

[70] R. Tessier, V. Betz, D. Neto, A. Egier, and T. 

Gopalsamy, ―Power-Efficient RAM mapping 

algorithms for FPGA embedded memory blocks,‖ 
IEEE Trans. of Computer- Aided Design, vol. 26, no. 

2, pp. 278-289, Feb 2007. 

[71] Actel, ―IGLOO Handbook,‖ 2008. 

[72] V. George, H. Zhang, and J. Rabaey, ―The design of 

a low energy FPGA,‖ Proc. Int. Symp. on Low Power 

Electronics and Design, pp. 188-193, 1999. 

[73] M. Meijer, R. Krishnan, and M. Bennebroek, 

―Energy efficient FPGA interconnect design,‖ Proc. 

Conf. on Design and Test in Europe, pp. 1-6, 2006. 

[74] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. 

Kastner, and E. Bozargzadeh, ―HARP: hard-wired 

routing pattern FPGAs,‖ Proc. Int. Symp. on Field-

Prog. Gate Arrays, pp. 21- 29, 2005. 

[75] E. Kusse and J. Rabaey, ―Low-energy embedded 

FPGA structures,‖ Proc. Int. Symp. Low Power 

Electronics and Design, pp. 155-160, 1999. 

[76] J.H. Anderson and F.N. Najm, ―A novel low-power 
FPGA routing switch,‖ Proc. IEEE Custom Integrated 

Circuits Conf., pp. 719-722, 2004. 

[77] S. Khawam et al, ―The reconfigurable instruction cell 

array,‖ IEEE Trans. on VLSI Sys., vol. 16, no. 1, pp. 

75-85, 2008. 

[78] Y. Lin, F. Li, and L. He, ―Routing track duplication 

with fine grained power-gating for FPGA interconnect 

power reduction,‖ Proc. Asia South Pacific Design 

Automation Conf., pp. 645-650, 2005. 

[79] J. Lamoureux, G.G. Lemieux, and S.J.E. Wilton, 

―Glitchless: dynamic power minimization in FPGAs 

through edge alignment and glitch filtering,‖ (VLSI) 



 Reduction of Power Consumption in FPGAs - An Overview 69 

Copyright © 2012 MECS                                        I.J. Information Engineering and Electronic Business, 2012, 5, 50-69 

SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008 

[80] L. Cheng, D. Chen, and M. Wong. GlitchMap: An 

FPGA technology mapper for low power considering 

glitches. In ACM/IEEE DAC, pages 318 –323, 2007. 

[81] Q. Dinh, D. Chen, and M. Wong. A routing approach 

to reduce glitches in low power FPGAs. In ACM 

ISPD, pages 99–106, 2009. 

[82] S. Wilton, S. Ang, and W. Luk. The impact of 

pipelining on energy per operation in field-

programmable gate arrays. In Proc. Intl. Conf. on FPL, 

pages 719–728, 2004. 

[83] H. Lim, K. Lee, Y. Cho, and N. Chang. Flip-flop 

insertion with shifted-phase clocks for FPGA power 
reduction. In IEEE/ACM ICCAD, pages 335–342, 

2005 

[84] Tomasz S. Czajkowski and Stephen D. Brown. Using 

negative edge triggered FFs to reduce glitching power 

in FPGA circuits. In ACM/IEEE DAC, pages 324–

329,2007. 

[85] R. Fischer, K. Buchenrieder, and U. Nageldinger. 

Reducing the power consumption of FPGAs through 

retiming. In IEEE Engineering of Computer-Based 

Systems, pages 89 – 94, 2005. 

[86] Warren Shum and Jason H. Anderson Department of 

Electrical and Computer Engineering, University of 

Toronto ―FPGA Glitch Power Analysis and 

Reduction‖, IEEE  2011  

[87] J. Lamoureux and S.J.E. Wilton. FPGA clock 

network architecture: flexibility vs. area and power. In 

ACM/SIGDA Int’l Symposium on Field 

Programmable Gate Arrays, pages 101–108, Monterey, 
CA, 2006. 

[88] J. Lamoureux and S.J.E. Wilton. Clock-aware 

placement for FPGAs. In IEEE International 

Conference on Field-Programmable Logic and 

Applications, pages 124–131, Amsterdam, The 

Netherlands, 2007. 

[89] K. Vorwerk, M. Rahman, J. Dunoyer, Y.-C. Hsu, A. 

Kundu, and A. Kennings. A technique for minimizing 

power during FPGA placement. In IEEE International 

Conference on Field Programmable Logic and 

Applications, pages 233–238, Heidelberg, Germany, 

2008. 

[90]Clock Power Reduction for Virtex-5 FPGAs by Qiang 

Wang, Xilinx, Inc. Subodh Gupta, Xilinx, Inc. Jason 

Anderson, ECE Dept., Univ. of Toronto- FPGA’09, 

February 22–24, 2009, Monterey, California 

 
 

 

Prof. Naresh Grover did his B.Sc (Engg.) 

in 1984 and M.Tech in Electronics and 

Communication Engineering in 1998 

from REC Kurukshetra (Now NIT 

Kurukshetra). He has a rich experience of 

28 years in academics. He has authored 

two books on Microprocessors and is a co-author for a 

book on Electronic Components and Materials. His core 

area of interest is Microprocessors and Digital System 

Design. Presently he is doing his research work in the area 

of FPGA based digital system designs. 

 

 

Dr. M. K Soni did his B.Sc (Engg.) in 

1972 and M.Sc (Engg.) in 1975 from 

REC Kurukshetra (Now NIT 

Kurukshetra) and thereafter completed 

hid Ph.D from REC Kurukshetra (in 

collaboration with IIT Delhi) in 1988. 

He has a total 39 years of rich experience into Academics. 

His area of interest is microprocessor based control 

systems and digital system design. He has more than 100 

research papers in the International and National Journals 

to his credit. Presently he is Executive Director & Dean, 

Faculty of Engineering and Technology, Manav Rachna 

International University, Faridabad.  

 


